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Abstract

An analysis is made of the sound produced by vorticity generated as high pressure fluid is forced through an aperture

in the wall of a duct in the presence of an exterior baffle plate. The aperture typically behaves as a ‘pressure release’

opening when the flow is ideal and irrotational, corresponding to the traditional interpretation of the action of a finger

hole of a woodwind instrument, although theoretical predictions that neglect vorticity are irrelevant in practice except

at very high frequencies. The theory of vortex sound is applied to derive an approximate nonlinear equation for the

volume flux through the baffled aperture that generalises Cummings’s empirical equation for a jet exhausting through a

fully open orifice in a large wall. The equation takes account of the impingement of the jet on the baffle and of the

nonlinear ‘inertial blocking’ of the aperture flow. Application is made to the problem of compression wave generation

by a high-speed train entering a tunnel fitted with an entrance hood whose windows are partially ‘closed’ by the

presence of a side-wall of a railway cutting or embankment. Theoretical predictions are found to be in good agreement

with measurements made at model scale at train speeds �3002400 km=h.
r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Perforated splitter plates and cavity covers are frequently used in vibration control and to suppress acoustic noise [see

e.g. Cummings (1984, 1986), Howe (1979a, b, 1998a), Hughes and Dowling (1990), Salikuddin and Plumlee (1980),

Salikuddin (1990) and Vér (1990)]. But vorticity generated during unsteady high Reynolds number flow through an

aperture can also be a powerful source of sound (Howe, 1998a; Howe et al., 2003a; Howe and McGowan, 2007). The

hydrodynamics of such flows govern the influence of the partial opening of ‘finger holes’ on the fine tuning of a

woodwind instrument (Benade, 1976; Leppington, 1982). A very important application at a much larger scale is the use

of relatively large apertures or ‘windows’ in the side-wall of a railway tunnel, usually near the tunnel portal, to alter the

waveform of the low frequency compression wave generated by a high-speed train entering the tunnel (Ozawa and

Maeda, 1988; Ozawa et al., 1991; Maeda, 2002). All of these acoustic effects depend for their action on the presence of

vorticity in the aperture outflow.

The amplitude of the compression wave generated as a high-speed train enters a tunnel is frequently as large as 2% or

3% of atmospheric pressure. Uncontrolled nonlinear steepening of the wave as it propagates ahead of the train in the
e front matter r 2008 Elsevier Ltd. All rights reserved.
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tunnel can increase the discomfort to passengers and personnel within the tunnel, and produces the ‘micro-pressure

wave’ often observed to be radiated from the distant tunnel exit in the form of a subjectively annoying ‘crack’ or ‘bang’.

The principal practical method of suppressing this wave involves modification of the portal where the train enters the

tunnel so that the initial pressure rise across the wavefront is sufficiently ‘stretched-out’ that nonlinear steepening

becomes ineffective (Ozawa et al., 1978; Ozawa and Maeda, 1988, 1998; Maeda et al., 1993; Maeda, 2002; Howe et al.,

2003b, 2006; Howe, 2007).

The modified portal usually is formed by the addition of a ‘hood’, consisting of a thin-walled tunnel extension placed

ahead of the tunnel entrance. The ‘rise time’ of the compression wave formed as a train enters the hood can be increased

by permitting high pressure air in front of the train to exhaust through one or more windows in the hood walls. The air

leaves the window in the form of a high-speed jet (with velocity often exceeding half that of the train). Experimental

design studies and analyses have usually assumed that the jet flows freely into the ambient atmosphere (Howe et al.,

2006). In practice, however, the hood is often sited within a railway ‘cutting’ with windows facing the cutting wall; an

air jet forced out of the window must then impinge on the wall and produce a change in the window’s acoustic

properties that are analogous to those of a partially closed finger hole.

In this paper we consider both theoretically and experimentally the aeroacoustics of a wall-baffled aperture of this

kind, for an aperture in a uniform duct in the presence of a parallel, exterior baffle plate. The problem of sound

generation by impingement of the jet on the baffle is formulated in Section 2 as a problem in the theory of vortex sound

(Howe, 1998a; Howe et al., 2000). The influence of the baffle on the propagation of low frequency sound in the duct is

discussed in Section 3. Application is then made to the problem of compression wave generation by a high-speed train

(Section 4) and predictions of the influence of a baffled window are compared with model scale test results (at train

speeds �3002400km=h) in Section 5.
2. Aeroacoustics of the aperture

2.1. Governing equations

Consider a cylindrical hard-walled duct of rectangular cross-section of area A having walls of uniform thickness ‘w.

There is a circular aperture of radius Rw and area Aw ¼ pR2
w5A in one of the walls. Take coordinate axes

x ¼ ðx1;x2; x3Þ with the origin at the centre of the inner face of the aperture, the x1-axis parallel to the duct (Fig. 1), and

with the x3-axis directed ‘inwards’ from the aperture. The exterior face of the aperture is ‘covered’ by a parallel rigid,

concentric circular wall or baffle plate of radius D at a perpendicular standoff distance d from the outer face, where D is

assumed to be smaller than the width of the adjacent duct wall.

The fluid within the duct is at rest in the mean and is homogeneous with mean density r0 and sound speed c0. The

Mach number of any unsteady motions is sufficiently small for the flow to be regarded as isentropic and for the

propagation and generation of sound to be governed by Lighthill’s (1952) equation in the form (Howe, 1998a, 2003)

1

c20

q2

qt2
� r2

� �
B ¼ divðx ^ vÞ, (2.1)
Fig. 1. Scattering of low frequency sound in an infinite duct with circular wall aperture and exterior circular panel.
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where t denotes time, v is the fluid velocity, x ¼ curl v is the vorticity, and the acoustic variable is the total enthalpy B.

In the present case of isentropic motion we can put B ¼
R
dp=rþ 1

2
v2, because fluctuations in the density r are

determined by changes in the pressure p. In the absence of vorticity B ¼ �qj=qtþ constant, where j is the velocity

potential of the motion. In the absence of flow B may be assumed to vanish.

A plane acoustic wave BI ðtþ x1=c0Þ satisfying the homogeneous form of (2.1) is incident on the aperture from

x1 ¼ þ1. The disturbance Bs in the duct scattered from the aperture is an out-going solution of (2.1) including source

terms involving vorticity produced by the ‘jetting’ of fluid forced through the aperture by the incident wave. To

determine Bs Green’s function Gðx; y; t� tÞ is introduced that satisfies

1

c20

q2

qt2
�r2

� �
G ¼ dðx� yÞdðt� tÞ; G ¼ 0 for tot, (2.2)

within the duct and aperture and within the region between the external wall of the duct and the baffle. G is required to

have vanishing normal derivatives on the duct walls and on the baffle and to vanish at the circular cylindrical opening

$ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ x2

2

q
¼ D (S in Fig. 1) at the outer circumference of the circular baffle plate. The latter corresponds to the low

frequency approximation in which the escape of acoustic energy from the duct through the aperture to the ambient free

space is ignored.

The usual procedure involving the application of Green’s theorem and the radiation condition to Eq. (2.1) with B

replaced by Bs, and Eq. (2.2) permits Bs to be expressed in the form (Baker and Copson, 1969; Landau and Lifshitz,

1987; Crighton et al., 1992; Howe, 1998a)

Bsðx; tÞ ¼ �

I
SþS

Gðx; y; t� tÞ
qBs

qyj

ðy; tÞ � Bsðy; tÞ
qG

qyj

ðx; y; t� tÞ

 !
dSjðyÞ dt

þ

Z
Gðx; y; t� tÞ

q
qyj

ðx ^ vÞjðy; tÞd
3ydt, (2.3)

where the integration is over all values of the source time �1otoþ1, the surface integral is over the region S

consisting of the interior wall of the duct and the solid boundaries of the region between the baffle and the exterior duct

wall (with surface element dS directed into the fluid), and over the circular cylindrical control surface S; the volume

integral is over the fluid regions occupied by vorticity.

Crocco’s form of the momentum equation consistent with approximation (2.1) (Howe, 1998a)

qv
qt
þ rB ¼ �x ^ v� n curlx, (2.4)

where B ¼ BI þ Bs and n is the kinematic viscosity can be used to simplify the integrals in (2.3). Viscosity can usually be

ignored in high Reynolds number flows of aeroacoustic relevance. The contribution to (2.4) from the bulk viscosity has

therefore been neglected, because its effect is small everywhere. On the other hand, the shear viscosity is responsible for

possibly significant frictional boundary forces and is usually retained. In what follows, however, it will be assumed that

the Reynolds number is sufficiently large that the predominant influence of viscosity is to facilitate the release of

vorticity from the edges of the aperture leading to the formation of the jet in Fig. 1. This can be handled formally by

imposing a Kutta condition at the aperture edges (Crighton, 1985), and henceforth the explicit contribution from

surface friction will be ignored.

Then, application of the divergence theorem to the vortex integral in (2.3) and use of (2.4) and the condition

B ¼ BI þ Bs ¼ 0 on S permit Bs to be expressed in the form

Bsðx; tÞ ¼ �

I
S

BI ðtÞ
qG

qyj

ðx; y; t� tÞdSjðyÞdtþ
I

S

Gðx; y; t� tÞ
qvj

qt
þ
qBI

qyj

 !
ðy; tÞdSjðyÞdt

�

Z
ðx ^ vÞjðy; tÞ

qG

qyj

ðx; y; t� tÞd3ydt

� �

I
S

BI ðtÞ
qG

qyj

ðx; y; t� tÞdSjðyÞdt�
Z
ðx ^ vÞjðy; tÞ

qG

qyj

ðx; y; t� tÞd3ydt, (2.5)

where the final line follows because the normal component of velocity and the normal derivative of the incident plane

wave both vanish on S.
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2.2. Formal solution

Only plane waves can propagate in the duct when the characteristic wavelength of the sound is large compared to its

diameter �
ffiffiffiffiffi
A
p

. It is shown in Appendix A that in this limit the leading approximation to Green’s function is

Gðx; y; t� tÞ �
c0

2A
1�

j�ðyÞ
L

� �
H t� t�

jx1j

c0

� �
exp
�c0Aw

2LA
t� t�

jx1j

c0

� �� �
; jx1jb

ffiffiffiffiffi
A
p

, (2.6)

when the source point y is in the neighbourhood of the aperture and the field point x is within the duct at distances

jxjb
ffiffiffiffiffi
A
p

. In the long wavelength limit the principal contributions to the sound consist of the monopole and dipole

components in a formal multipole expansion of the acoustic field. Approximation (2.6) determines these components,

which correspond, respectively, to the first and second terms in the curly brackets. The function j�ðyÞ is a velocity

potential that describes a hypothetical incompressible flow from the duct through the aperture. It satisfies Laplace’s

equation and is normalised to have the following asymptotic behaviours:

j�ðyÞ�

Aw

2pr
for jyj � rbRw in the duct above the aperture;

Aw

2pd
ln

$

Rw

� �
þ ‘ for ðy21 þ y22Þ

1=2
� $bRw between the outer duct wall and the baffle;

8>><
>>: (2.7)

where the length ‘�OðRwÞ is the aperture ‘end correction’ [discussed in Appendix A; Howe (1998a) and Rayleigh

(1926)], and

L ¼
Aw

2pd
ln

D

Rw

� �
þ ‘. (2.8)

Let the incident wave correspond to an acoustic pressure p ¼ pI ðtþ x1=c0Þ, so that BI ¼ pI=r0, with characteristic

wavelength large compared to the duct diameter and also relative to the radius D of the baffle. Then BI ¼ pI ðtÞ=r0 in the

surface integral over S in (2.5), which then becomes

psðx; tÞ � ps t�
jx1j

c0

� �
¼ �

c0Aw

2AL

Z ½t�
�1

pI ðtÞ exp
�c0Aw

2AL
ð½t� � tÞ

� �
dt

þ
r0c0

2AL

Z ½t�
�1

Z
ðx ^ v � rj�Þðy; tÞ exp

�c0Aw

2AL
ð½t� � tÞ

� �
d3ydt; jx1jb

p
A, (2.9)

where ps ¼ Bs=r0 and ½t� ¼ t� jx1j=c0 is the retarded time.

2.3. Nonlinear differential equation for the sound

The first integral in this formula represents the pressure scattered from the aperture in ideal flow, when vorticity

production in the aperture is ignored. Except at very high frequencies a pressure rise in the duct produced by an incident

wave actually forces high Reynolds number flow through the aperture causing separation at the aperture edges and the

formation of a jet that in a first approximation strikes the baffle plate axisymmetrically, as implied in Fig. 1. The jet

shear layer is unstable and the ordered picture in this figure is not generally maintained as the flow spreads out in the

region between the duct and the baffle plate, where the shear layer thickens and the flow becomes turbulent. However,

the resulting small scale turbulence cannot affect the dominant characteristics of the low frequency sound in the duct,

determined by the final integral of (2.9).

Fig. 2 illustrates the typical streamline pattern of the hypothetical flow defined by the function j� in the second

integrand of (2.9). Sound is generated strongly in regions where jrj�j is large and rapidly varying on scales comparable

to those of the jet vorticity. This occurs close to the aperture edges: at larger distances the streamlines become uniformly

spaced and parallel, so that rj�� constant and the overall contribution from random vorticity between the duct and

baffle tends to be very small.

At high Reynolds number it may be assumed that the shed vorticity is initially confined to ‘free streamlines’ SJ at the

edge of the jet (see Fig. 2). All of the j�-streamlines cut across SJ within a distance �OðdÞ from the aperture. The flow

speed on the jet boundary is constant and equal to Us � UsðtÞ ¼ the asymptotic jet velocity predicted by free-

streamline theory (Birkhoff and Zarantonello, 1957; Gurevich, 1965).

This simple model can be used to evaluate approximately the final integral of (2.9). The free-streamline jet boundary

SJ is spanned by circular vortex lines with centres on the x3-axis and with x ¼ Usdðs?Þĥ, where s? is distance measured

in the direction of the outward normal from SJ and ĥ is a unit azimuthal vector (directed anticlockwise when viewed in
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the direction of increasing x3); the vorticity convection velocity v ¼ 1
2

Ust, where t is a unit vector tangential to SJ in

flow direction. Hence, because ĥ ^ t is the unit normal on SJ directed outwards from the jet, the spatial component of

the final integral of (2.9) becomesZ
ðx ^ v � rj�Þðy; tÞd3y ¼

1

2
U2

sðtÞ
I

SJ

qj�

qs?

� �
s?¼0

dS �
Aw

2
U2

sðtÞ. (2.10)

Therefore Eq. (2.9) reduces to

ps t�
jx1j

c0

� �
¼ �

c0Aw

2AL

Z ½t�
�1

pI �
1

2
r0U2

s

� �
ðtÞ exp �

c0Aw

2AL
ð½t� � tÞ

� �
dt. (2.11)

To calculate Us we introduce the outflow velocity V ðtÞ averaged over the cross-section of the aperture, and the

acoustic particle velocity

Usðt� jx1j=c0Þ ¼
psðt� jx1j=c0Þ

r0c0
(2.12)

of the scattered wave in the duct. Continuity of volume flux at low frequencies requires that

UsðtÞ ¼ �
AwV ðtÞ

2A
; UsðtÞ ¼

V ðtÞ

s
, (2.13)

where s is the effective aperture discharge coefficient (or jet ‘contraction ratio’). A differential equation satisfied by V ðtÞ

is now obtained by formally taking the limit jx1j ! 0 in (2.11) and (2.12) and differentiating (2.11) with respect to time,

to find

L
dV

dt
þ
Awc0V

2A
þ

V2

2s2
¼

pI ðtÞ

r0
. (2.14)

This equation determines the volume flux through the baffled aperture when forced by the incident pressure pI . Its

solution and the second of Eqs. (2.13) determine the nonlinear vortex source term in the representation (2.11) of the

sound radiated in the duct from the aperture. However, this sound is more easily calculated directly in terms of V ðtÞ by

using Eq. (2.12) and the first of Eqs. (2.13).

2.4. Cummings’s equation

Eq. (2.14) generalises Cummings’s (1984, 1986) equation (Howe, 1998a) used to study the transmission of sound

through an orifice in a large plane wall. The length L is the effective length of a slug of fluid (of cross-sectional area

Aw) set in motion through the aperture. The particular representation (2.8) can be regarded as the sum of three parts:

(a) a length ‘1 ¼ ðp=4ÞRw for the fluid set in motion in the duct (the same as on one side of an aperture in an infinite

plane wall); (b) the wall thickness ‘w; and (c) the remaining effective length L� ð‘1 þ ‘wÞ of fluid on the outer side of

the aperture. Cummings (1984, 1986) points out that this decomposition is valid only for irrotational flow. When the

outflow forms a jet the inertia of the fluid determined by the lengths (b) and (c) is progressively eliminated because the
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motion in the outflow is ultimately confined only to the jet. To account for this Cummings replaces L in (2.14) by

L̄ ¼ ‘1 þ
L� ‘1

1þ
1

3

LJ

2Rw

� �1:585
" #, (2.15)

in which LJ is the effective length of the jet, defined by

LJ ðtÞ ¼
Z t

0

jV ðt0Þjdt0, (2.16)

where t is measured from the instant at which the mean velocity V ðtÞ last changed sign. The numerical coefficients in

(2.15) were validated by experiment. The influence of the functional form of L̄ on the acoustic properties of the

aperture is actually limited in practice to the initial transient form of the induced aperture flow, the subsequent

behaviour tends to be dominated by the nonlinear term on the left of (2.14). We shall therefore assume that (2.15) is

applicable also to the baffled aperture with the wall jet.

The discussion thus far has been implicitly for the case V ðtÞ40 where the jet is directed out of the duct. When Vo0

Eq. (2.14) remains valid provided V2 is replaced by V jV j. For a free jet Cummings found by experiment that the effective

value of contraction ratio s could be taken to be constant and equal to 0:75, which is larger than the steady state limit

0.62 for a continuous jet. We shall use this value when the jet is directed into the duct. During outflow, however, when

the jet impinges on the baffle at a standoff distance d, we use the following formula derived in Appendix B

s ¼ 0:75 erf 1:43
d

Rw

� �
, (2.17)

where erfðxÞ ¼ ð2=
ffiffiffi
p
p
Þ
R x

0 e�x
2

dx is the error function, so that s�0:75 when dbRw.

In summary, the following revised form of the aperture velocity equation (2.14) will be used

L̄
dV

dt
þ

Awc0V

2A
þ

V jV j

2s2
¼

pI ðtÞ

r0
, (2.18)

where

L̄ ¼

L� ð‘1 þ ‘wÞ þ ð‘1 þ ‘wÞ 1þ
1

3

LJ

2Rw

� �1:585
" #,

for Vo0;

‘1 þ ðL� ‘1Þ 1þ
1

3

LJ

2Rw

� �1:585
" #,

for V40;

8>>>>><
>>>>>:

(2.19)

s ¼

0:75 for Vo0;

0:75 erf 1:43
d

Rw

� �
for V40

8><
>: (2.20)

and LJ is defined as in (2.16).
3. Incident acoustic compression wave

Consider first an incident wave in the form of a compression wave pI ðtþ x=c0Þ of amplitude pc defined by

pI ¼
pc

2
1þ erf

c0

d
tþ

x1

c0

� �� �� �
, (3.1)

where erfð�Þ is the error function introduced in Section 2.4. The length 2d defines the thickness of the wavefront, which is

required to be large compared to the diameter of the wall aperture ðdbRwÞ, so that the incident pressure may be

assumed to be uniform over the inner face of the aperture.

Eqs. (2.12) and (2.13) supply the net acoustic pressure in the duct in the form

p ¼ pI tþ
x1

c0

� �
�

r0c0Aw

2A
V t�

jx1j

c0

� �
, (3.2)
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where V ðtÞ is the solution of the system of Eqs. (2.16)–(2.20). These equations are to be solved subject to the initial

conditions

V ¼ 0; LJ ¼ 0; t!�1. (3.3)

To examine the effect of varying standoff distance d=Rw we consider an incident wave amplitude pc ¼ 2:5 kPa and

wavefront thickness 2d ¼ 4R � 4
ffiffiffiffiffiffiffiffiffiffi
A=p

p
, where R is the radius of the circle whose area is the same as cross-sectional

area of the duct. A wave of this amplitude is typical of that of the compression wave generated when a high-speed train

enters a uniform tunnel of semi-circular cross-section of radius R (Howe et al., 2006).

For the purposes of illustration we take

D

R
¼ 1;

Aw

A
¼ 0:1; ‘w ¼ 0, (3.4)

so that Rw=R ¼ 0:316 and the wave thickness 2d ¼ 4D.

Profiles of the calculated wave (3.2) transmitted past the aperture (into the region x1o0) are plotted as the solid line

curves in Fig. 3 for values of the relative baffle standoff distance d=Rw given in Table 1.

The aperture has no effect when d=Rw ¼ 0, so that the transmitted and incident waves are the same. Pressure

relaxation occurs at the aperture when d=Rw40. In all cases, however, the shape of the initial pressure rise is essentially

unaffected by the initial stages of jet formation in the aperture. For this problem the jet is always directed outwards

from the duct ðV40Þ. The jet inertia acts as an acoustic ‘block’ at the aperture, and is most significant when d=Rw is

small: the corresponding value of the contraction ratio s is displayed in Table 1; small values of s increase the influence

of the nonlinear inertia term in Eq. (2.18). The enhancement of nonlinearity produced by jet impingement becomes

unimportant for d42Rw, when s assumes its free field value of 0.75. The results are only weakly dependent on the ‘slug

length’ L̄, which also depends on d=Rw.

The pressure to the rear of the transmitted wavefront relaxes to a constant value determined by the following steady

state solution of Eq. (2.18), obtained by discarding the first term on the left-hand side:

pðtþ x1=c0Þ�pc �
r0c20s

2

4

Aw

A

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

A

Aw

� �2
8pc

r0c20s2

s
� 1

8<
:

9=
;; c0½t�

R
b1. (3.5)
Table 1

The contraction ratio s and slug length L (for conditions (3.4)) when V ðtÞ40.

d=Rw 0 0.25 0.5 1.0 2.0

s 0 0.29 0.52 0.72 0.75

L=Rw 1 3.3 2.2 1.6 1.5

Fig. 3. Transmission of the compression wave (3.1) past the baffled aperture for different values of d=Rw for pc ¼ 2:5kPa, d ¼ 2R and

conditions (3.4), where ½t� ¼ tþ x1=c0.
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The broken line curve in Fig. 3 is the irrotational approximation to the transmitted wave when the baffle plate is

absent. The velocity V ðtÞ is calculated by putting s ¼ 1 in (2.18) and L̄ ¼ 2	 ðp=4ÞRw, the value appropriate for a

circular aperture in a plane wall. High frequency components of an incident wave are transmitted past the aperture, but

the low frequency tail of the wave cannot pass the aperture in this ideal, irrotational limit because of the formation of an

expansion wave of amplitude �pc that radiates within the duct in both directions from the aperture.
4. Compression wave generated by a train

4.1. Formulation

Application of the theory is now made to the model scale experiment depicted in Fig. 4, involving a circular

cylindrical, thin-walled tunnel of radius R and cross-sectional area A ¼ pR2 containing a baffled, circular ‘window’

whose centre is distance ‘h from the tunnel portal. Any influence of the change in shape of the duct cross-section, from

rectangular to circular, should be small provided the window area is small relative to the duct cross-sectional area. The

theory will be compared with experiment in Section 5, where the baffle is taken to represent the influence of the wall of a

‘cutting’ adjacent to the tunnel. It is convenient to introduce a new coordinate system x ¼ ðx; y; zÞ (the suffix notation is

abandoned to avoid confusion with the earlier coordinates used in Sections 2 and 3) with the origin O on the cylinder

axis in the entrance plane; the x-axis is coaxial with the cylinder and is directed out of the tunnel.

An axisymmetric model train enters the tunnel from x40 and travels in the negative x-direction at constant speed U.

The axes of the train and tunnel coincide. It is required to determine the influence of the baffled window on the

compression wave generated by the train. The initial form of the wavefront cannot depend on the length of the tunnel,

which is therefore assumed to extend to x ¼ �1. Similarly, for the purpose of calculating the compression wave it is

convenient to assume that the length of the train greatly exceeds the ‘nose length’ L indicated in the figure, beyond

which the circular cross-section of the train is taken to be uniform with radius h and area A0 ¼ ph2.

4.2. Compression wave when the window is absent

The influence of the window on the compression wave is determined by a modified form of Eqs. (2.16)–(2.20), in

which the incident wave pI corresponds to the pressure wave produced by the train in the absence of the window.

The main pressure rise pe across the wavefront is generated over a time �2R=U during which the centroid of the train

nose may be assumed to enter the tunnel. Reynolds and Nusselt numbers based on tunnel radius are typically of order

105 in the experiments (and �107 at full scale), which implies that the initial form of pe can be found by neglecting

viscous diffusion and heat transfer. At later times flow separation from the train (from S in Fig. 4(a)) produces a wake

that generates a very low frequency component pw of the pressure in the form of an extensive, linearly growing ‘tail’ to

the rear of the wavefront (the growth being proportional to the retarded length of the train within the tunnel). The
Fig. 4. Circular cylindrical tunnel of radius R with a baffled window of radius Rw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘x‘y=p

p
with its geometric centre at

x ¼ �‘h; y ¼ 0; z ¼ R. An axisymmetric train enters the tunnel portal at x ¼ 0 travelling along the centreline of the tunnel at constant

speed U: (a) view from above; (b) view into the tunnel.
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pressure wave ahead of the train can therefore be cast in the form

p ¼ pe þ pw. (4.1)

It was shown by Howe (1999) and confirmed by experiments reported by Howe et al. (2000) that an excellent

approximation to the component pe at positions x ðo0Þ within the tunnel ahead of the train is given by

peðx; tÞ �
r0U2

Að1�M2Þ
1þ

A0

A

� �Z 1
�1

qAT

qx0
ðx0 þU ½t�Þ

qj�E
qx0
ðx0; 0; 0Þdx0, (4.2)

where M ¼ U=c0 is the train Mach number, A0=A is the ‘blockage’, ATðsÞ is the cross-sectional area of the train at an

axial distance s from the front of the nose, ½t� ¼ tþ ðx� ‘EÞ=c0 is the effective retarded time, and ‘E is the acoustic ‘end

correction’ of the tunnel portal [�0:61R for an unflanged circular cylindrical portal; see Rayleigh (1926) and Howe

(1998a)]. The function j�EðxÞ � j�Eðr; xÞ (where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
) is that solution of Laplace’s equation that represents the

potential of incompressible flow out of the tunnel portal having unit speed within the tunnel. The following formula is

applicable for a thin-walled tunnel in the form of an unflanged, circular cylinder (Howe, 1998b):

qj�E
qx
ðr; xÞ ¼

1

2
�

1

2p

R1
0 I0 l

r

R

	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K1ðlÞ
I1ðlÞ

r
sin l

x

R
þFðlÞ

h i	 

dl; roR;

FðlÞ ¼
1

p

Z 1
0

ln½K1ðmÞI1ðmÞ=K1ðlÞI1ðlÞ�

m2 � l2
dm;

9>>>=
>>>;

(4.3)

where I0; I1; K1 are modified Bessel functions.

The integrand of (4.2) is nonzero only at the retarded positions of the nose and tail of the train where qAT=qx0a0.

Model scale tests have confirmed the validity of (4.2) for A0=Ap0:2 and Mo0:35.
In the experiments discussed in Section 5 the interior tunnel radius R, the wall thickness ‘w, and the window centroid

x ¼ �‘h have the following respective values:

R ¼ 50mm; ‘w ¼ 0:1R; ‘h ¼ 10R. (4.4)

The experimental train has an ellipsoidal nose defined by

r ¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

L
2�

x

L

	 
r
; 0oxoL r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p	 

;

h ¼ 22:35mm; L ¼ 67:05mm;

9>=
>; (4.5)

so that the blockage A0=A ¼ 0:2.
Eq. (4.2) has been used to calculate the pressure pe depicted in Fig. 5 when the train enters the tunnel at

U ¼ 300km=h. The retarded time is taken in the nondimensional form U ½t�=R, where ½t� ¼ tþ ðx� ‘EÞ=c0, and the

nose of the train is assumed to pierce the tunnel entrance plane at t ¼ 0. The pressure pe rises rapidly across the

wavefront during a time �2R=U by an amount

r0U2

ð1�M2Þ

A0

A
1þ

A0

A

� �
�2:18kPa.
Fig. 5. The pressure waves pe and pe þ pw generated at the tunnel portal in the model scale tunnel of radius R ¼ 50mm by the

axisymmetric train with nose profile (4.5) when U ¼ 300km=h and friction factor m ¼ 0:053.
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The actual thickness of the wavefront �2R=M ¼ 8R, which is large compared to the tunnel diameter and much larger

than a typical window.

The pressure pw produced by the wake can be calculated using the following formula that has been validated against

experiment by Howe and Iida (2003):

pwðx; tÞ �
2pm2r0U2

AðA�A0Þ
2

ðU ½t� � LÞþ

ð1�M2Þ
RA2

0 1�
MA

ðA�A0Þ
þ

M2Að2A�A0Þ

2ðA�A0Þ
2

� �2
"

þhA2 1�
MA0

ðA�A0Þ
þ

M2A0ð2A�A0Þ

2ðA�A0Þ
2

� �2
#
, (4.6)

where ðxÞþ ¼ x; 0 according as x_0. This pressure wave increases linearly with the retarded distance U ½t� �L of the

separation point S on the train from the tunnel entrance. The coefficient m is a turbulence friction factor dependent on

the train Reynolds number and the blockage A0=A. Howe and Iida (2003) found that m � 0:053 for model scale

experiments of the type to be considered, and this value has been used to plot in Fig. 5 the overall compression wave

pe þ pw when U ¼ 300 km=h.

4.3. Calculation of pI

The air flow through the baffled window at x ¼ �‘h (Fig. 4(a)) is driven by the incident pressure pI of Eq. (2.18). If

the nose of the train enters the tunnel at time t ¼ 0 the incident wave must coincide with the pressure pe þ pw prior to

the arrival of the train at the window at t�‘h=U . The wave reaches the window at t�‘h=c0, so that

pI ¼ peð�‘h; tÞ þ pwð�‘h; tÞ; to
‘h

U
. (4.7)

The pressure pI applied to the window decreases rapidly over a time of order L=U as the nose passes the window by

an amount equal to the maximum pressure

r0U2

ð1�M2Þ

A0

A
1þ

A0

A

� �

attained by pe (Fig. 5). The pressure decrease as a function of time is determined to a good approximation by calculating

the ‘near field’ pressure generated on the tunnel wall by a distribution of volume sources on the nose that represent the

displacement of air by the advancing train [see Howe (2005) for details]. The actual contribution of pe to pI for all times

is then obtained by replacing peð�‘h; tÞ in (4.7) by

peð�‘h; tÞ 1�

Z 1
�1

ATðx
0Þ

A0
CðUt� ‘h � x0Þdx0

� �
, (4.8)

where the nonnegative function

CðxÞ ¼
1

2pR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2
p

Z 1
0

l
I1ðlÞ

cos
lx

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2
p

� �
dl (4.9)

resembles a ‘broadened’ d-function of width �4R that peaks at x ¼ 0 and satisfies
R1
�1

CðxÞdx ¼ 1.

The integral in (4.8) vanishes until the train nose approaches the window at t�‘h=U ; after the nose has passed the

window ðt4ð‘h þ LÞ=UÞ the integral rapidly increases to 1, and the pressure represented by (4.8) drops to zero.

Immediately after this, all that remains of the incident pressure (4.7) is the frictional contribution pwð�‘h; tÞ, which must

then be equal to its value at t ¼ ð‘h þ LÞ=U and remain equal to this until the tail of the train enters the tunnel, because

the linear pressure rise produced by the wake between the window and the tunnel entrance is constant until the tail

enters.

Thus, instead of the representation (4.7), the pressure pI ðtÞ incident on the baffled window, produced by the train

when the presence of the window is ignored, should be taken in the form

pI ðtÞ ¼

peð�‘h; tÞ 1�
R1
�1

ATðx
0ÞCðUt� ‘h � x0Þ

A0
dx0

� �
þ pwð�‘h; tÞ; toð‘h þ LÞ=U ;

peð�‘h; tÞ 1�
R1
�1

ATðx
0ÞCðUt� ‘h � x0Þ

A0
dx0

� �
þ pwð�‘h; ð‘h þ LÞ=UÞ; t4ð‘h þ LÞ=U :

8>>><
>>>:

(4.10)
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Fig. 6. Variation of the incident pressure pI ðtÞ on a window whose centroid is at x ¼ �‘h ¼ �10R in the model scale tunnel of radius

R ¼ 50mm when the axisymmetric train with nose profile (4.5) enters the tunnel at U ¼ 300km=h and when the friction factor

m ¼ 0:053.
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The variation of pI ðtÞ with time predicted by this formula is illustrated in Fig. 6 for the train and tunnel considered

previously in Fig. 5 when the window is centred at x ¼ �‘h ¼ �10R.

4.4. The compression wave transmitted past the window

When the tunnel portal is ignored, the unsteady flow out of the baffled window at speed V ðtÞ generates the plane

pressure waves

ps t

ðxþ ‘hÞ

c0

� �
; x_� ‘h where psðtÞ ¼ �

r0c0Aw

2A
V ðtÞ. (4.11)

The component psðt� ðxþ ‘hÞ=c0Þ is reflected at the tunnel portal with sign reversal. Because the characteristic

wavelength is large compared to the tunnel diameter the reflection at the open end actually appears to occur at x ¼ ‘E ,

so that the reflected wave is

�ps tþ
½x� ð‘h þ 2‘EÞ�

c0

� �
; xo0, (4.12)

which may be interpreted as the field produced by a ‘negative’ image window at x ¼ ‘h þ 2‘E . This reflected pressure

evaluated at x ¼ �‘h must be introduced as an additional forcing pressure on the right-hand side of the aperture

velocity equation (2.18), which may now be expressed in the following modified form:

L̄
dV

dt
¼

pI ðtÞ

r0
þ psðtÞ � ps t�

2ð‘h þ ‘EÞ

c0

� �
�

V ðtÞjV ðtÞj

2s2

�
pI ðtÞ

r0
�

Awc0V ðtÞ

2A
þ

Awc0V t�
2ð‘h þ ‘EÞ

c0

� �
2A

�
V ðtÞjV ðtÞj

2s2
, (4.13)

where pI ðtÞ is given by (4.10) and s is defined as in (2.20).

In addition, however, the definition of the effective length L̄ðtÞ must also be adjusted, because in Section 2 the tunnel

wall and the baffle panel were assumed to be parallel and distance d apart, which differs from the experimental

arrangement illustrated schematically in Fig. 4, where d is now the shortest distance between the window and the baffle.

This change actually affects only the contribution to L̄ðtÞ from the region exterior to the window. Because this tends to

be ‘blown away’ very rapidly during the initial stages of jet formation, and the exterior region is now approximately

acoustically ‘open’, we shall assume that the exterior contribution to L̄ðtÞ is ‘1 ¼ ðp=4ÞRw, the same as for the opening

on the side within the tunnel. This implies that the definition (2.19) can be reduced to

L̄ðtÞ ¼ ‘1 þ
‘1 þ ‘w

1þ
1

3

LJ

2Rw

� �1:585
" # ; ‘1 ¼

p
4

Rw; V ðtÞ_0. (4.14)
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The causal solution of Eq. (4.13) is required, subject to the initial conditions V, LJ ¼ 0 for t large and negative. The

solution is used to compute the compression wave pressure pðx; tÞ radiated beyond the window into the tunnel ahead of

the train by means of

pðx; tÞ ¼ peðx; tÞ þ pwðx; tÞ þ ps tþ
ðxþ ‘hÞ

c0

� �
� ps tþ

½x� ð‘h þ 2‘EÞ�

c0

� �
, (4.15)

where psðtÞ ¼ �r0c0V ðtÞAw=A.
5. Comparison with experiment

Predictions of Eq. (4.15) are now compared with model scale experiments performed at train speeds

U�3002400km=h at the Railway Technical Research Institute in Tokyo. The experimental train and tunnel, and

the procedures for measuring the pressure and train speed are the same as those used and described in detail by Howe

et al. (2003a). The tunnel consisted of a 6.5m long horizontal, hard walled, unflanged circular cylindrical pipe of inner

diameter 2R ¼ 100mm. An adjustable rectangular window of dimensions ‘x 	 ‘y, respectively, in the x and y

directions was situated in the upper wall of the tunnel with its centroid vertically above the tunnel axis at distance

‘h ¼ 10R ¼ 0:5m from the entrance plane. The tunnel wall thickness at the window was ‘w ¼ 0:1R. The original

apparatus was modified by the addition of a rigid, square and horizontal aluminium baffle panel with sides of length

0.5m fixed above the tunnel and centred on the window. The face of the panel wetted by the jet was at z ¼ Rþ d. The

photograph (Fig. 7) shows the arrangement when d ¼ 80mm.

Measurements were made for cases involving either a ‘small’ or a ‘long slit’ window with the specifications given in

Table 2.

A model axisymmetric train with an ellipsoidal nose profile defined as in Eq. (4.5) was projected into the tunnel by

means of a three-stage friction drive involving three pairs of rotating wheels; the train was guided along a 5mm

diameter taut steel wire stretched along the tunnel axis and passing smoothly through a cylindrical bore hole along the

train axis. The compression wave pressure was measured using a flush mounted wall sensor in the tunnel 1.5m from the

tunnel entrance plane ðx ¼ �1:5mÞ, with an overall error estimated to be between 2% and 3%. Estimates were also

made of the likely errors produced by wave reflection from the laboratory walls, ceiling and floor. Image sources in the

floor (about 1m below the tunnel) were considered to be the most important source of reflections. However, simple

estimates of the magnitude of reflected sound at the tunnel mouth indicated that this could modify pressures within

the tunnel by no more than about 0.1% of the total pressure rise across the compression wave front.

The pressure gradient ðdp=dtÞ was calculated using a simple central difference scheme after high frequency

components (42 kHz for U ¼ 300km=h and 42:5kHz for U ¼ 400km=h) of the measured pressure were removed

using a fast Fourier transform algorithm. The temperature and atmospheric pressure were measured for each run and

later used to calculate the mean density of air from the equation of state of an ideal gas.
Fig. 7. Side view of the experimental model scale configuration, involving a circular cylindrical tunnel and an adjacent square baffle

panel.
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Table 2

Window dimensions.

Window ‘x (mm) ‘y (mm)

Small 20 ð0:4RÞ 20 ð0:4RÞ

Long slit 80 ð1:6RÞ 20 ð0:4RÞ

M.S. Howe et al. / Journal of Fluids and Structures 25 (2009) 205–227 217
5.1. Baseline validation of the prediction equations

We first verify that the test procedure conforms with the known general agreement between theory and experiment

(Howe et al., 2006) for the baseline cases
(a)
 No window: U ¼ 298km=h, r0 ¼ 1:22kg=m3.
(b)
 Small window, no baffle: U ¼ 300km=h, r0 ¼ 1:19kg=m3, s ¼ 0:75.
Fig. 8 displays the measured compression wave pressure p (n n n) and the ‘pressure gradient’ qp=qt (...) produced by

the model train (4.5). The variation of qp=qt is of interest because it determines the subjective impact of the wave

(Maeda, 2002). In all cases the time origin is adjusted to coincide with the instant at which the train nose begins to cross

the entrance plane of the tunnel. The solid curves in the figure are the predictions of (4.15). The theory is strictly

applicable only to circular windows; it has therefore been assumed in case (b) that the action of the square window of

dimensions ‘x ¼ ‘y ¼ 20mm is equivalent to that of a circular window of equal area, with Rw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘x‘y=p

p
¼ 11:28mm.

The fine details of the predictions at later times are influenced significantly by the wake-generated component pw of

the pressure, and therefore by the value assigned to the friction factor m of Eq. (4.6). Model scale tests reported by Howe

and Iida (2003) indicate that m�0:053 yields results that agree well with experiment at later times (for U ½t�=R412; say).
However, there is no Reynolds number similarity between full and model scale, so that both the present theoretical

predictions and model scale tests should not necessarily be expected to yield accurate predictions at full scale at large

times. The drag is also influenced by surface roughness, which is usually unimportant at model scale, but may cause pw

to make a substantially larger relative contribution at full scale, when irregular surface structures are present,

particularly beneath the train. In what follows the value of the friction factor has been modified where necessary (from

m ¼ 0:053, the new value being indicated on the corresponding graph) to give the best overall agreement between the

measured and predicted pressure at large times.
5.2. Small window experiments

Measurements were made with the small window for four different values of the baffle standoff distance d. The train

speed was maintained at U ¼ 300km=hin all cases; other relevant parametric values are listed in Table 3, on the basis

that the equivalent radius of the window can be taken to be Rw ¼ 11:28mm, and where s is calculated for the

outflowing jet using Eq. (2.17).

The graphical comparison of theory and experiment for all of the small window tests are presented in Fig. 9. A

careful inspection reveals that although the overall effect of the baffle is small, the close proximity of the baffle to the

window in Cases (i) and (ii) leads to a small elevation in the magnitude of the initial pressure rise at the wavefront. The

results for Cases (iii) and (iv) are essentially identical to those in Fig. 8(b) for the unbaffled window.
5.3. Long slit window experiments

The long slit window has an equivalent radius Rw�0:45R, which is too large for the theory of Section 4 to be strictly

applicable. We therefore adopt the procedure successfully used by Howe et al. (2006) to determine the influence on

compression wave formation of large unbaffled windows, viz. the replacement of the slit window by a distribution along

its length of smaller ‘subwindows’ having the same total area. To do this the long slit window of dimensions ‘x ¼ 1:6R,

‘y ¼ 0:4R is replaced by four equal subwindows each with ‘x ¼ ‘y ¼ 0:4R and equivalent radius Rw ¼ 0:127R�

11:28mm, equally spaced with centroids at x ¼ �‘hk, k ¼ 1; 2; 3; 4, where ‘hk=R ¼ 9þ 0:4k.
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Table 3

Parameter values for the small window; s is given for the outflowing jet.

Case d (mm) d=Rw s ðV40Þ r0 (kg=m3)

(i) 5.3 0.47 0.494 1.18

(ii) 10.0 0.89 0.696 1.19

(iii) 20.0 1.77 0.750 1.17

(iv) 40.0 3.55 0.750 1.17

Fig. 8. Measured (nnn, ...) and predicted (——) compression wave pressure and pressure gradient: (a) no window, when U ¼

298km=h and r0 ¼ 1:22 kg=m3; (b) small, unbaffled window at distance ‘h ¼ 10R from the tunnel portal, when U ¼ 300km=h,
r0 ¼ 1:19kg=m3, s ¼ 0:75. The model scale train defined by (4.5) is projected along the centreline of the tunnel. Measurements are

made within the tunnel at a distance of 1.5m from the entrance plane.
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Formula (4.15) for the pressure radiated into the tunnel must now be replaced by

pðx; tÞ ¼ peðx; tÞ þ pwðx; tÞ þ
X

k

psk tþ
ðxþ ‘hkÞ

c0

� �
� psk tþ

½x� ð‘hk þ 2‘EÞ�

c0

� �� �
, (5.1)

where psk is defined for each subwindow of area Aw as in (4.11), with V ðtÞ replaced by the corresponding window

velocity, which will be denoted by VkðtÞ for the k th window.

Similarly, Eq. (4.13) must be replaced by four coupled simultaneous equations for the velocity Vk through each of the

four subwindows. Because each subwindow is subject to the driving pressure generated by the other subwindows it is
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Fig. 9. Measured (nnn, ...) and predicted (——) compression wave pressure and pressure gradient for the small window experiments

of Table 3, all at U ¼ 300km=h. The model scale train defined by (4.5) is projected along the centreline of the tunnel. Measurements

are made within the tunnel at a distance of 1.5m from the entrance plane.

Table 4

Parameter values for the long slit window; s is given for the outflowing jet.

Case d (mm) d=Rw (subwindow) s (subwindow, V40) r0 (kg=m3)

(i) 4.9 0.43 0.465 1.19

(ii) 9.9 0.88 0.694 1.19

(iii) 19.9 1.76 0.750 1.20

(iv) 40.0 3.55 0.750 1.20
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easily seen that Vk must satisfy

L̄k
dVk

dt
¼

pIkðtÞ

r0
þ
X4
j¼1

psj t�
j‘hk � ‘kjj

c0

� �
� psj t�

ð‘hk þ ‘kj þ 2‘EÞ

c0

� �� �
�

VkðtÞjVkðtÞj

2s2
, (5.2)

where L̄k is defined as in (4.14) with LJ determined by (2.16) with Vk replacing V, and pIkðtÞ is the incident pressure

(4.10) evaluated at the k th subwindow.

Four tests were made with the long slit window for the baffle standoff distances d and other relevant parameters given

in Table 4.

Fig. 10 displays general overall agreement between theory and experiment when the train speed was maintained at

U ¼ 300km=h. The effect of the near baffle in Case (i) is seen to be marginally more significant than in the

corresponding Case (i) for the small window. This is further illustrated in Fig. 11, where the Case (i) measurements and

predictions (� � �) for both the small and the long slit windows are compared with the predictions (——) for the

corresponding unbaffled window (for which s ¼ 0:75). The compression wave amplitude during the initial formation of

the wave is significantly underpredicted for the long slit window when no account is taken of the presence of the baffle.

Fig. 12 reveals a corresponding overall agreement between theory and experiment for the long slit cases of Table 4 at

the higher speed of U�400km=h.
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Fig. 10. Measured (nnn, ...) and predicted (——) compression wave pressure and pressure gradient for the long slit window

experiments of Table 4, all at U ¼ 300km=h and m ¼ 0:05. The slit window is divided into four equal square subwindows, each of

equivalent radius Rw ¼ 11:28mm with centres at x=R ¼ �9:4, �9:8, �10:2, �10:6. The model scale train defined by (4.5) is projected

along the centreline of the tunnel. Measurements are made within the tunnel at a distance of 1.5m from the entrance plane.

Fig. 11. Measured (nnn, ...) and predicted (� � �) compression wave pressure and pressure gradient for (a) Case (i) of the small

window and (b) Case (i) of the long slit window, compared with predictions (——) for the corresponding unbaffled window (s ¼ 0:75).
The slit window is divided into four equal square subwindows, each of equivalent radius Rw ¼ 11:28mm with centres at x=R ¼ �9:4,
�9:8, �10:2, �10:6. The model scale train defined by (4.5) is projected along the centreline of the tunnel. Measurements are made

within the tunnel at a distance of 1.5m from the entrance plane.
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Fig. 12. Measured (nnn, ...) and predicted (——) compression wave pressure and pressure gradient for the long slit window

experiments of Table 4, all at U�400km=h. The slit window is divided into four equal square subwindows, each of equivalent radius

Rw ¼ 11:28mm with centres at x=R ¼ �9:4, �9:8, �10:2, �10:6. The model scale train defined by (4.5) is projected along the centreline

of the tunnel. Measurements are made within the tunnel at a distance of 1.5m from the entrance plane.
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6. Conclusion

Vorticity produced when fluid is forced through the constriction formed by a baffled wall aperture is responsible for

the principal characteristics of the sound generated at the aperture. In the absence of vorticity the aperture typically acts

as a ‘pressure release’ opening (the traditional behaviour of a woodwind finger hole) and predictions based on this

model are generally irrelevant in practice except at extremely high frequencies. For the low frequency problems

discussed in this paper the whole character of the flow in the aperture and the sound generated depends crucially on the

nonlinear ‘blocking’ of the motion by the vorticity.

An approximate nonlinear equation for the volume flux through the baffled aperture is easily deduced from the

theory of vortex sound. It is a generalisation of Cummings’s empirical equation describing forced flow through an

orifice in a large wall. That equation determines the volume flux carried by the jet emerging from the aperture; in our

case it includes in addition the influence of the impact of the jet on the exterior baffle. Our use of this equation to predict

the influence of a small baffled window in a tunnel entrance hood on the compression wave generated by a high-speed

train agrees well with measurements made at model scale at speeds �300 km=h. Similar good agreement with

experiment is found for a baffled long slit window for speeds �3002400 km=h, after first representing the long window

by an array of smaller, hydrodynamically coupled windows of the same total area. It is now appropriate to consider the

incorporation of this representation of an exterior baffle into more general compression wave prediction schemes, such

as that proposed by Howe et al. (2006).
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Appendix A. Green’s function

Put

Gðx; y; t� tÞ ¼ �
1

2p

Z 1
�1

Ḡðx; y;oÞe�ioðt�tÞ do, (A.1)

where Ḡ satisfies the inhomogeneous Helmholtz equation ðr2 þ k20ÞḠ ¼ dðx� yÞ, k0 ¼ o=c0. The solution of this

equation is required at points x within the duct of Fig. A1 (of cross-sectional area A) at distances jx1jb
ffiffiffiffiffi
A
p

from the

aperture when the source point y is in the neighbourhood of the aperture, and for the compact limit where the

characteristic wavelength of the sound is large relative to
ffiffiffiffiffi
A
p

.

Only plane waves can propagate within the duct when k0
ffiffiffiffiffi
A
p

51 (Pierce, 1989). Ḡðx; y;oÞ is then readily determined

from the solution of the reciprocal problem in which the source is at x within the duct and the solution Ḡðy; x;oÞ is
sought as a function of y near the aperture. The solution of the direct problem is then obtained from the reciprocal

relation Ḡðx; y;oÞ ¼ Ḡðy; x;oÞ (Rayleigh, 1945). When k0
ffiffiffiffiffi
A
p

is small the potential due to a source at x in the

reciprocal problem is equal to eik0 jy1�x1j=2ik0A when jx1 � y1jb
ffiffiffiffiffi
A
p

in a duct unbounded in both directions. To fix

ideas, consider the case where the observer in the direct problem is in x1o0 to the left of the aperture in Fig. A1. On the

right of the source (y14x1), but at distances b
ffiffiffiffiffi
A
p

from the aperture, we write

Ḡðy; x;oÞ ¼
e�ik0x1

2ik0A
feik0y1 þRe�ik0y1g, (A.2)

where the complex coefficient R determines the amplitude and phase of the wave reflected from the region of the

aperture. Now k0y1 is small near the aperture, and therefore just to the left of the aperture we have approximately

Ḡðy; x;oÞ �
e�ik0x1

2ik0A
f1þRþ ik0y1ð1�RÞg;

ffiffiffiffiffi
A
p

5jy1j51=k0. (A.3)

Similarly, in the duct on the right of the aperture

Ḡðy; x;oÞ ¼
e�ik0x1

2ik0A
Teik0y1 �

e�ik0x1

2ik0A
Tf1þ ik0y1g;

ffiffiffiffiffi
A
p

5jy1j51=k0, (A.4)

where T is a suitable transmission coefficient.

When the acoustic wavelength is much larger than the duct width the motion through the aperture becomes identical

to that of an irrotational, reciprocating incompressible flow, where we can write

Ḡðy; x;oÞ �
e�ik0x1

2ik0A
ðBþ Cj�ðyÞÞ, (A.5)

where B, C are constants and j�ðyÞ is a velocity potential that represents incompressible irrotational flow out of the

duct through the aperture, with asymptotic behaviours given in Eq. (2.7) of the main text. The value of ‘ in (2.7) varies
Fig. A1. Infinite duct with circular wall aperture and exterior circular wall element of radius D.
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Fig. A2. Variation of the end correction ‘ of the baffled aperture with the external wall standoff distance d when the cylinder wall

thickness ‘w ¼ 0.
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with the standoff distance d. Its variation as a function of d=Rw is illustrated in Fig. A2 for ‘w ¼ 0, calculated from the

formula

‘ ¼

Z $

�1

qj�

qs
ds�

Aw

2pd
ln

$

Rw

� �
,

where s is distance along an integration contour that starts at jsjbRw within the duct, passes through the aperture and

terminates at a radial distance s�$bRw in the gap. The figure shows how ‘ increases with d=Rw, formally approaching

‘�ðp=2ÞRw as d=Rw !1, the same as for a circular aperture in a plane wall of infinitesimal thickness in the absence of

other boundaries. It also increases when d is very small, because qj�=qs must become very large within the aperture to

maintain a constant volume flux. The end correction for ‘w40 is approximately given by adding ‘w to the value shown

in Fig. A2.

It is assumed that the characteristic wavelength is large compared to the radius D of the baffle, and that the radiation

of sound from its circumference into the ambient medium is negligible, so that Ḡðy; x;oÞ ¼ 0 there. Then

B ¼ �C
Aw

2pd
ln

D

Rw

� �
þ ‘

� �
,

and Eq. (A.5) becomes

Ḡðy; x;oÞ �
e�ik0x1

2ik0A
Cfj�ðyÞ �Lg where L ¼

Aw

2pd
ln

D

Rw

� �
þ ‘. (A.6)

The values of the remaining constantsR,T and C are now found by equating values of the potential and volume flux

in the regions of overlap of approximations (A.3), (A.4) and (A.6), making use of the relations (2.7). In this way we find

T ¼ 1þR ¼ �CL ¼
k0

k0 þ
iAw

2LA

� � . (A.7)

In particular Eqs. (A.1), (A.6) and the reciprocal theorem now show that for source points y in the vicinity of the

aperture

Gðx; y; t� tÞ �
fj�ðyÞ �Lg

4piLA

Z 1
�1

e�ioðt�tþx1=c0Þ do
k0 þ iAw=2LA

; x15�
ffiffiffiffiffi
A
p

. (A.8)

The same result with �x1 replaced by þx1 is obtained when the observer is at x1b
ffiffiffiffiffi
A
p

to the right of the aperture. In

both cases, therefore, we find

Gðx; y; t� tÞ �
c0

2A
1�

j�ðyÞ
L

� �
H t� t�

jxj

c0

� �
exp

�c0Aw

2LA
t� t�

jxj

c0

� �� �
; jxjb

ffiffiffiffiffi
A
p

. (A.9)
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This represents the potential produced at x at time t in the duct at large distances from the aperture by a point source

dðx� yÞdðt� tÞ in the immediate vicinity of the aperture. When jyj � rbRw in the duct the geometrical details of the

aperture become unimportant, because j�ðyÞ=L! 0 and

Gðx; y; t� tÞ �
c0

2A
H t� t�

jxj

c0

� �
exp

�c0Aw

2LA
t� t�

jxj

c0

� �� �
; jxjb

ffiffiffiffiffi
A
p

. (A.10)

In the absence of the aperture the low frequency potential produced by a point source at y�0 would be

Gðx; y; t� tÞ �
c0

2A
H t� t�

jxj

c0

� �
; jxjb

ffiffiffiffiffi
A
p

.

The exponential factors in approximations (A.9), (A.10) account for the gradual decay of this step wave to the rear of

the two wavefronts propagating to x1 ¼ �1 because of the presence of the aperture and the vanishing of G at the

opening to the free space ambient fluid at $ ¼ D.
Appendix B. Effective jet contraction ratio

Consider nominally steady, free-streamline flow from the duct through the baffled wall aperture driven by a constant

and uniform excess pressure p0 within the duct. According to Bernoulli’s equation the asymptotic speed of the wall jet

flow along the baffle is Us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p0=r0

p
. The mean flow speed V out of the duct in a plane spanning the aperture is

V ¼ sUs, where s is the discharge coefficient, i.e. the effective area-contraction ratio of the jet outflow.

B.1. Two-dimensional jet

The dependence of s on the baffle standoff distance d is readily determined in the case of flow from a slit aperture,

where the whole motion may be assumed to be two-dimensional and calculated by the complex variable method of free-

streamline theory (Lamb, 1932; Birkhoff and Zarantonello, 1957; Gurevich, 1965). Fig. B1(a) illustrates the calculated

form of the free streamlines in the simplest case of steady two-dimensional, incompressible flow from the half-space

x340 through a slit aperture occupying the interval �hox1oh in a thin wall at x3 ¼ 0. The flow discharges against an

infinite plane wall at x3 ¼ �d, forming symmetric wall jets of asymptotic width sh.

The calculated dependence of s on d=2h is shown in Fig. B1(b); it reveals that s may be assumed to have attained its

asymptotic value of 0.61 for d42h. There is no simple formula that relates s and d=2h, but the following argument

leads to an excellent interpolation formula (whose predictions are shown dotted in the figure):
(a)
 When d=2h! 0 the shape and size of each of the symmetrical jets must be the same as that predicted for flow into a

two-dimensional Borda mouthpiece (Lamb, 1932; Birkhoff and Zarantonello, 1957; Gurevich, 1965; Batchelor,

1967). In this limit the asymptotic jet thickness is sh ¼ d=2, so that

s!
d

2h
as

d

2h
! 0.
(b)
 When d=2hb1 the asymptotic jet width of contraction ratio s � 0:61 is attained before impact with the wall, and

therefore

s! smax � 0:61 as
d

2h
!1.
The results (a) and (b) actually determine not only the limiting values of s as d=2h! 0;1, but also the slopes of the

functional dependence. Because the upper limiting value is attained essentially for d=2h41, this suggests the use of the

following interpolation formula:

s ¼ smax erf

ffiffiffi
p
p

2smax

d

2h

� �
; smax � 0:61. (B.1)

This is plotted as the dotted curve in Fig. B1(b), where it is seen to provide an excellent working approximation to the

exact dependence of s on d=2h.
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Fig. B1. (a) Two-dimensional free-streamline flow from an aperture of width 2h in a thin wall into a gap of width d between the wall

and an infinite baffle panel. (b) Calculated dependence of s on d=2h (——) and the dependence (...) given by the interpolation formula

(B.1).
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B.2. Axisymmetric jet

The corresponding free-streamline area-contraction ratio of a circular jet impinging on a baffle plate is not amenable

to analytical treatment, although the free jet has been investigated numerically [e.g. Southwell (1946), Southwell and

Vaisey (1946), Garabedian (1956), Birkhoff and Zarantonello (1957), and Bergthorson et al. (2005)] have discussed the

impinging jet at low Reynolds numbers. It will be sufficient here to develop an approximate interpolation formula that

gives s as a function of the nondimensional standoff distance d=Rw, analogous to Eq. (B.1) for the two-dimensional jet.

To do this we note that
(a)
 when d=Rw ! 0 the Borda mouthpiece limit implies that the volume flux pR2
wsUs through the aperture must equal

2pRw 	 d=2	Us, so that

s!
d

Rw

as
d

Rw

! 0;
(b)
 when d=Rwb1 the asymptotic jet contraction ratio s � 0:62 is attained before impact with the wall, and therefore

s! smax � 0:62 as
d

Rw

!1.
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hese limiting values of s determine the following interpolation formula analogous to (B.1):
T ffiffiffip� �

s ¼ smax erf

p
2smax

d

Rw

; smax � 0:62. (B.2)

The independent variable d is scaled by the radius Rw of the aperture, whereas in two dimensions the corresponding

length scale is 2h. This is in accord with the observation that relaxation to uniform conditions occurs more rapidly in

three dimensions than in two.

Cummings (1984, 1986) showed from a comparison with experiment that for the approximate calculation of unsteady

flow involving free jets better agreement with experiment is obtained by taking s ¼ 0:75 instead of the usual steady jet

value �0:62. We shall introduce the same correction for the unsteady jet impingement problem. To do this

approximation (B.2) must be scaled-up for use in Eqs. (2.18) and (4.13) when, respectively, V ðtÞ, VkðtÞ40. This is done

by replacing the first, multiplicative factor smax in (B.2) by 0.75, but leaving the value of smax unchanged in the argument

of the error function. This yields formula (2.17) of the main text.
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